New Class of Wavelets for Signal Approximation
نویسندگان
چکیده
This paper develops a new class of wavelets for which the classical Daubechies zero moment property has been relaxed. The advantages of relaxing higher order wavelet moment constraints is that within the framework of compact support and perfect reconstruction (orthogonal and biorthogonal) one can obtain wavelet basis with new and interesting approximation properties. This paper investigates a new class of wavelets that is obtained by setting a few lower order moments to zero and using the remaining degrees of freedom to minimize a larger number of higher order moments. The resulting wavelets are shown to be robust for representing a large classes of inputs. Robustness is achieved at the cost of exact representation of low order polynomials but with the advantage that higher order polynomials can be represented with less error compared to the maximally regular solution of the same support.
منابع مشابه
Signal detection Using Rational Function Curve Fitting
In this manuscript, we proposed a new scheme in communication signal detection which is respect to the curve shape of received signal and based on the extraction of curve fitting (CF) features. This feature extraction technique is proposed for signal data classification in receiver. The proposed scheme is based on curve fitting and approximation of rational fraction coefficients. For each symbo...
متن کاملWilson wavelets for solving nonlinear stochastic integral equations
A new computational method based on Wilson wavelets is proposed for solving a class of nonlinear stochastic It^{o}-Volterra integral equations. To do this a new stochastic operational matrix of It^{o} integration for Wilson wavelets is obtained. Block pulse functions (BPFs) and collocation method are used to generate a process to forming this matrix. Using these basis functions and their operat...
متن کاملImage Compression Using Multiwavelet and Multi-Stage Vector Quantization
The existing image coding standards generally degrades at low bit-rates because of the underlying block based Discrete Cosine Transform scheme. Over the past decade, the success of wavelets in solving many different problems has contributed to its unprecedented popularity. Due to implementation constraints scalar wavelets do not posses all the properties such as orthogonality, short support, li...
متن کاملSolving infinite horizon optimal control problems of nonlinear interconnected large-scale dynamic systems via a Haar wavelet collocation scheme
We consider an approximation scheme using Haar wavelets for solving a class of infinite horizon optimal control problems (OCP's) of nonlinear interconnected large-scale dynamic systems. A computational method based on Haar wavelets in the time-domain is proposed for solving the optimal control problem. Haar wavelets integral operational matrix and direct collocation method are utilized to find ...
متن کاملNew Optimal Observer Design Based on State Prediction for a Class of Non-linear Systems Through Approximation
This paper deals with the optimal state observer of non-linear systems based on a new strategy. Despite the development of state prediction in linear systems, state prediction for non-linear systems is still challenging. In this paper, to obtain a future estimation of the system states, initially Taylor series expansion of states in their receding horizons was achieved to any specified order an...
متن کامل